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GENERAL SOLUTION - ROOF DEFLECTIONS

A uniform roof diaphragm can be modeled as a
continuously loaded beam. In conventional stud
construction, the studs resist no load as they
deflect at the eave, and the roof diaphragm
carries the entire eave load, +w. In contrast,
post frames do resist lateral eave loads in direct
proportion to the eave deflection, y. Thus the
lateral load is shared among the frames and roof
diaphragm. This is the key to understanding the
method this author proposes: as the deflections
at the eave increase, the ioads to the roof
diaphragm decrease and the loads to the frames
increase. (Figure 1)

The sum of the resistances of the post-frames
and diaphragm is equal and opposite to the eave
load, w. This can be written as:

g tr = -w M
Where
-w= the total resistance of the frames and

diaphragm at the eave (+w = the total
wind load along the eave)
q= the resistance of the roof diaphragm
r= the resistance of the post-frames

The resistance of the post frames can be
expressed as:

¥ = —ky (2)
Where
k= the lateral stiffness of the frames in

pounds per inch of frame deflection at
the eave divided by the frame spacing
y= the lateral deflections in inches.

By substituting (2) into (1) and rearranging:

g =ky -w (3)

Since q is numerically equal to that portion of the
eave load resisted by the diaphragm, it can be

applied to the analog beam as a load to predict
deflections and shears.

We can simplify the solution if we neglect
diaphragm deflections due to bending as small
compared to the shear deflections. The
differential equation for diaphragm deflection can
then be written as (Luttrel, 1987, p. Alll-12,
Timoshenko, p. 202):

.49 4)

y*=  the second derivative of y with respect to
X, the coordinate along the beam axis
C= the stiffness of the diaphragm in pounds

By substituting (3) into (4) and rearranging
terms:

k w ()
e e
C C
This is a second order differential equation with

the following standard form, general solution and
characteristic equation. (Tuma 1979, p.180):

p (8) (stnd form)
y'otay = flx)

(7) (gen sol)

y =y, ty,
(8) (char eq)
A +a=0
Where
Ve = complementary solution and
Vo= particular solution.
For (6} ' _ 9
(5) ‘ (9)
a = ——
C

Substituting (9) into (8) yields:

Azoc=+/~\(£
C

For this method it is appropriate to use a positive
a. The complementary solution is:

(10)



y, = A, cosh(ax) + B, sinh(ox) ~ (11)

Where:

cosh = hyperbolic cosine

sinh = hyperbolic sine

X = the distance along the roof “beam” from
the end wall

A and B = constants determined for a given set
of boundary conditions

i= an index which identifies a particular set
of boundary conditions

" When f(x) is a constant as in (5), the particular
solution of the equation is that constant divided
by a:

C) _w (12)

w1l v C
y” C() C( k k

a

Substituting (11) and (12) into (7) yields the
complete solution:

13
y = Agosh(ox) + B sinh(ox) +l;:- (13)

Appendix | demonstrates that (13) is a solution
of (5).

General Solution Roof Diaphragm Shears
The shear at the end walls and each roof bay

can be determined by applying a relationship
from Timeshenko (p. 202)

;v (14)
y I
C
Where:
V= roof diaphragm shear at any pointx
y'= the first derivative of y with respect to x

The first derivative of (13) with respect to x is
{Tuma, p.85):

y' = 4, osinh(ax) + B, acosh(ox) (19)

Substituting (15) into (14) and rearranging yieids:

v = Ca [4, sinh(ax) + B, cosh(ox)] (16)

Application to Post-Frame

Finally, to apply (13) and (16) to a post-frame
building, their terms must be converted from a
continuous load to a series of concentrated
loads. During the first phases of a typical post-
frame design, trial values are selected or
calculated for the following parameters:

d= the trial embedment depth,

S;=  the trial frame spacing.

b= the effective post width (EP486),

K= the lateral stiffness of a post-frame
(Ibf/in)(EP484, Bohnhoff 1992a),

R.=  the eave support reaction of a
propped post-frame (Ibf}(EP484,
Bohnhoff 1992a)

C,= the lateral stiffness of the roof
diaphragm (Ibf/in) (EP484)(Anderson,
1997)

Soil properties are also estimated:

S= the allowable lateral soil bearing
pressure per unit of depth (psf/ft)
(EP486) and,

n,=  the constant of horizontal soil reaction
(psf/ftr2)(EP486).

Values for k and w can be approximated by
dividing by the frame spacing. That is:

K (17)

k= £
Sf

(18)

\o:]mx v

C, is converted to C by multiplying by the frame
spacing: b

C = C\S) (19)

Substituting (17) and (19) into (10) for the
positive case yields:



20

T (20)

o = — .._._?_
SN C,

Substituting (17) and (18) into (13) yields:

R, (21)
y = Agosh(ax) + Bsinh(ox) +—
K

P

Substituting (19) into (16) yields:

v = ChocS/{Aisi-nh(ocx) + Beosh(ow)] 2

Equations (21) and (22) are the general
solutions for roof diaphragm deflections and
shears in the combined lateral force resistive
system, where diaphragm and frame stiffness
are constant. To find a particular solution, the
coefficients A; and B, must be determined by
evaluating the appropriate boundary conditions
(BC).

BC 1 - RIGID END WALLS

In current practice it is common to consider the
end walls as rigid (Figure 2.), the boundary
conditions are that y=0atx=0andthaty=0
atx = L. A, can be determined by applying the
first boundary condition to (21). The cosh(0) = 1
and the sinh(0) = 0, thus:

%, (23)
4, + == =0
K
p
R, 24)
Al e
K
p

By substituting (24) into (21), and applying the
second boundary condition (and more algebra)
B, can be determined similarly. (Appendix II
presents the derivation of B;.)

_ R, (cosh(ar)-1) (25)

B,
Kp sinh(olL)

Example 1 - Rigid End Walls

This example follows that of Skaggs (1993)
presented in the March, 1993, issue of Frame
Building News. (There are some minor
differences in notation.) A post-frame building is
60 ft. wide x 64 ft. long x 12 ft. eave, 3/12 roof
pitch. Posts are 6x6 No. 2 Southern Pine at 8 ft.
0.c., embedded 4 ft. The windward wall
pressure is 16 psf, the windward roof pressure is
4 psf, leeward roof pressure is -14 psf and
leeward wall pressure is -10 psf. There are no
large end wall openings.

In steps 1 through 3, Skaggs calculated the

following values based upon the analog he
selected:

C

, = 11,380 pli

K
i

I

149 pli R, = 2,075 Ibf

Calculate compatible deflections

Skaggs used a table of values to find the factor
mbD. This factor is multiplied by R, to find the
actual restraining force provided by the
diaphragm. In this case, mD = 0.90 and the
diaphragm restraining force at this frame was
found to equal 2075(.9) = 1868 Ibf.

Using the alternate method presented in this
paper:

© L=768in. and S,=96 in.

(20) yields:
1 149 0.001192
€= — () = =
96 11380 inch

Table 1 column 2 presents the caiculated values
of the constants for this example.

The maximum roof diaphragm deflection (in.) will
be at the center frame (x = 384 in.). Using (21) it
is determined to be 1.341 in.



Table 2 columns 2 and 3 presents the
deflections calculated at each frame using (21)
and DAFI. The restraining force provided by the
roof diaphragm at the center frame is 2075 -
149(1.341) = 1875 Ibf. This agrees closely with
Skaggs estimate of 1868 Ibf.

The maximum shear (Ibf.) is at the end walls. In
this case, (22) reduces to (x = 0, sinh(0) = 0,
cosh(0) = 1):

= C, S B = 7765 Ibf

Where:
Ve, = maximum shear toend wall, x =0

The maximum end wall shear calculated by
DAF1is 7,774 Ibf. This is based on 2075 Ibf, R,,
applied at each interior frame and 1037.5 Ibf, 1/2
R,, applied to each end frame. Because we are
approximating a series of continuous loads with
a uniform load, Ve, overstates the maximum roof
diaphragm shear. The maximum shear in the
first bay can be found by evaluating (22) at the
center of the first roof bay:

: Sf Sf
vr, =ChS/OL[A 1s1nh(oc?) +Blcosh(oc?)] =6740

Where:
Vr, = shear at the center of the first roof bay.

The shear in the first bay calculated by DAFI is
6,737 Ibf. Table 3 columns 2 and 3 present the
shears calculated by (22) and DAFI.

The foregoing solution is for rigid end walls.
Recent research (Gebremedhin, et. al., 1992,
1993) has shown that end wall deflections can be
significant.

BC 2 - NON-RIGID END WALLS OF EQUAL
STIFFNESS

In this case the end walls are not rigid, but they are
equally stiff. This can be expressed as:

y=y,atx =0,y =y,atx =1L

The constants in (21) can be determined similarly
to the case of rigid end walls. They are:

) R, (26)
P
KP
R, 27)
v, - ;{-—)(1 ~ cosh(oL))
B, = — £
2 sinh(cL)

The relationship between endb wall shear and
deflection can be expressed as:

ve, (28)

yz—

Kew2

Where

Ve,= shear at the end walls
Kew, = stiffness at the end walls

Substituting (22) and (27) into (28) at x = 0, yields:

R (29)

e
Kew ;
K[1- 2 sinh(oL)
P aC,S, (1~ cosh(aL))

Yy~

Example 2 - Non-Rigid End Walls Equal
Stiffness '

Assume that on the building analyzed by Skaggs
both end walls have a stiffness, Kew,, of 14,225

pli.

Table 1 column 4 presents the calculated values
for the constants for this example. Table 2
columns 4 and 5 compares the deflections
calculated by (21) and DAFI and Table 3 columns
4 and 5 compare the calculated shears.

BC- 3 NON-RIGID END WALLS OF UNEQUAL
STIFFNESS



Another case is where the end walls are not rigid
and they are not equally stiff. This can be
expressed as:

y=y,atx =0,y =y,atx =1L

The constants in (21) can be determined similarly
to the case of rigid end walls. They are:

R, (30)
4y =y, - X
r
R, R, @31
(y4 - }—{—) - (y3 - -‘IE"')COSh((XL)
B. = P p
} sinh(a.L)

Expressions for y, and y, can be derived similarly
to y, (29). However, these expressions are
complex and somewhat burdensome. This author
suggests that acceptable results can be obtained
by using estimates of the end wall deflections.

Example 3 - Non-Rigid End Walls of Unequal
Stiffness

Assume that on the building analyzed by Skaggs
the end wall at x = 0 has a stiffness, Kew,, of
14,225 pli. Further assume that because of a
large opening, the end wall at x = 768 in. has a
stiffness, Kew, of 7,113 pli. Estimate the
deflection of the end walls by using the previously
calculated shear, Ve, (BC-1).

7765
= “= 0.546, (use 0.50
Y3 T 4225 ( )
7765
= —— = 1.092, uselO)
Yo T 113 (

" Table 1 column 6 presents the calculated values of
the constants A and B corresponding to these
estimates. Table 2 columns 6 and 7 compares the
calculated deflections and Table 3 columns 6 and
7 compare the shears. These results can be
judged to be adequate for design, however, closer

agreement to DAFI can be obtained by making a
second estimate of the end wall deflections, based
on the shears from the first estimate.

8107
y, = = 0.57
314225
), - 6587 _ 4 o3
7113

Table 1 column 8 presents the calculated values of
the constants A and B corresponding to these
estimates. Table 2 column 8 presents the
calculated deflections and Table 3 column 8
presents the calculated shears.

CONCLUSION

In conclusion, it is appropriate to consider the
significance of the calculated deflections.
Predicting actual eave deflections under a "real
life" wind event is a practically impossible task.
Therefore this author suggests that the post-frame
designer should look upon these deflections as a
tool for apportioning load, so that the required
strength of each element in the lateral force
resistive system may conservatively be found.
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APPENDIX | - EQUATION (13) VERIFICATION

13
y = Agcosh(ox) + B sinh(ox) +% (13)

Differentiating with respect to x:
y' = o4, sinh(ox) + B, cosh(ox))

Differentiating again with respect to x:



y" = o? (4, sinh(ax) + B, cosh(0ix))

Substituting: o =

L3
c
y! = Ek,: (4, sinh(ax) + B, cosh(ax))

Substituting ¥ and y into (5):

—Ié—(A ;sinh(ox) +B cosh(ox)) -

k w w
——(Al.sinh ox +Bicosh(ocx)+__) = -
C (oux) P -

Which yields the identity:

w

L
C C
APPENDIX Il - CONSTANT B; DERIVATION

R, (30)
A3 = y3 - —I-<—— .
p

R
y, = A,cosh(aL) + B,sinh(aL) +K—e

P
Substituting for A, yields:

R
Y, = (y3——I—<—e-)cosh(ocL) + B sinh(aL)
_17
R

e

4+ 2
K
P

Rearranging terms yields:

R R
B, sinh(olL) = -~y ——)cosh(al
,sinh(al) = (v, I )=, % ) (oL)
P p
Finally:

Re Re

o, -—kf) - (y;;{——)cosh(o&l,)
B. = b P
} sinh(o.L)
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Table 1 - Values of Constants for Equations (21) and (22)
for Boundary Conditions 1, 2 and 3

BC -1 BC-2 BC-3
first estimate second estimate
Y, X=0 0 0.525 0.5 0.57
y, x =768 0 0.525 1.0 0.93
A -13.926 -13.401 -13.426 -13.356
B 5.963 5.7348 6.226 6.063
Note: all values are in inches, BC = Boundary Condition
Table 2 - Comparison of Eave Deflections
Calculated using Equation (21) vs DAFI
BC -1 BC-2 BC-3
Frame Eq (21) DAFI Eq (21) DAFI Eq (21) DAFI Eq (21)
L.ocation, x first estimate second estimate
0 (EW) 0 0.000 0.525 0.529 0.50 (EST) 0.562 0.57 (EST)
96 0.593 0.592 1.096 1.098 1.126 1.174 1.178
192 1.010 1.009 1.500 1.500 1.584 1.618 1.618
288 1.259 1.258 1.737 1.738 1.881 1.901 1.898
384 1.341 1.340 1.816 1.818 2.019 2.027 2.019
480 1.259 1.258 1.737 1.738 2.002 1.997 1.985
576 1.010 1.009 1.500 1.500 1.828 1.811 1.794
672 0.593 0.592 1.096 1.098 1.495 1.466 1.444
768 (EW) 0.000 0.000 0.525 0.529 1.0 (EST) 0.958 0.93 (EST)
Note: all values are in inches, EW = end wall, EST = estimated
Table 3 - Comparison of Roof Shears
Calculated using Equation (22) vs DAFI
BC -1 BC-2 BC-3
Roof Panel| Eq (22) DAFI Eq (22) DAFI Eq (22) DAFI Eq (22)
l.ocation, x . first estimate second estimate
O(EW) 7765 7774 7472 7519 8107 7996 7894
48 6740 8737 68486 6481 7120 6958 6912
144 4752 4750 4573 4570 5211 5058 5011
240 2827 2825 2720 2718 3371 3224 3176
336 938 938 903 902 1576 1432 1383
432 938 938 903 902 199 341 392
528 2827 2825 2720 2718 1977 2118 2172
624 4752 4750 4573 4570 3781 3923 3981
720 6740 6737 6486 6481 5634 5780 5842
768(EW) 7765 7774 7472 7519 6587 6817 6799
Note: x is in inches, all other values are in pounds, EW = end wall




