OVERLOOKED ASSUMPTION IN NONCONSTRAINED POST EMBEDMENT

By Patrick M. McGuire,' Member, ASCE

ABSTRACT:

In the traditional formula for determining the required embedment depth for nonconstrained posts

it is assumed that shear and moment at grade have the same algebraic sign, as is the case for determinant
structures that are free to translate laterally (flag poles or billboard signs). This article demonstrates that in an
indeterminant lateral force resistive system, which consists of a combination of embedded posts and structural
diaphragms (many buildings), the shear and moment at grade most often have opposite algebraic signs. In this
case the traditional formula should not be applied. This article presents an alternate method for checking em-
bedment depth based upon the calculated lateral soil bearing pressure.

INTRODUCTION

The formula that has traditionally been used for determining
the depth-of embedment of wood posts required to resist lateral
loads where no constraint is provided -at the ground surface,
such as a rigid floor or rigid ground surface pavement, is

d = 05A[1 + (1+ (4.36h/A))"? €))
where
A = 2.34P/IS,b @

In these equations, b = diameter of round post or footing or
diagonal dimension of square post; d = depth of embedment
in earth in feet (meters), not over 12 ft (3,658 mm) for com-
puting lateral pressure; 4 = distance in feet (meters) from
ground surface to point of application of P; P = applied lateral
force in pounds (kilonewtons); and S, = allowable lateral soil-
bearing pressure (pounds per square foot per foot of depth)
based on a depth of one-third the depth of embedment (kilo-
pascals).

This formula has served at least two generations of engi-
neers very well and was included in the May 1997 working
draft of the new International Building Code (IBC) under Sec-
tion 1805.7.2.1. However, it is the opinion of this author that
a further limitation should be applied to the use of this equa-
tion: “that no lateral constraint is provided above the ground
surface, such as a structural diaphragm.’’ It is the purpose of
this paper to explain the author’s rationale for adding this lim-
itation and to offer an alternate method for checking the em-
bedment of nonconstrained posts.

BACKGROUND

Since the 1970s there has been an increasing interest in the
structural design of low-rise buildings using lateral force re-
sistive systems (LFRS), which consist of a combination of
frames and diaphragms. A leading researcher of steel frames
combined with diaphragms is Larry Luttrell, who wrote a de-
sign manual published by the Steel Deck Institute (1987). A
vast amount of research has been conducted on this subject in
the -wood building industry, primarily through the American
Society of Agricultural Engineers.

Since the time the nonconstrained embedment formula first
appeared, about 35 years ago, buildings using preservatively
treated wood posts as structural members have evolved sig-

'PE., V.P., Borkholder Buildings, P.O. Box 32, 786 US 6 West, Nap-
panee, IN 46550.

Note. Discussion open until July 1, 1998. To extend the closing date
one month, a written request must be filed with the ASCE Manager of
Journals. The manuscript for this paper was submitted for review and
possible publication on October 17, 1997. This paper is part of the Prac-
tice Periodical on Structural Design and Construction, Vol. 3, No. 1,
February, 1998. © ASCE, ISSN 1084-0680/98/0001-0019-0024/$4.00 +
$.50 per page. Paper No. 16810.

- nificantly (Bender 1992). Today most ‘‘post-frame building’’

LFRS are designed using a combination of embedded posts
and roof/wall diaphragms (Gebremedhin and Manbeck 1992;
Woeste et al. 1992). To design these combined LFRS correctly,
one must recognize the assumptions. inherent in the derivation
of the nonconstrained formula. This. paper shows that one
(commonly overlooked) assumption is that the top of the post
is free to translate. When a system of roof and wall diaphragms
provide lateral restraint above grade, this overlooked assump-
tion is violated and the nonconstrained formula gives errone-
ous results.

REVIEW OF DESIGN PROCEDURES

. Several authors, most recently Meador (1997), have derived
formulas similar to the one in the IBC. They begin with these
assumptions:

1. The soil resistance to deformation is proportional to dis-
placement.

2. The resistance to deformation increases linearly with
depth below grade.

3. The post is rigid below grade (Meador 1997).

They use these assumptions to develop the following equa-
tion for the depth below: grade to the point of post rotation as
a function of shear and moment at grade. The derivation of
this equation is beyond the scope of this brief paper, but it is
readily available in the literature (Bohnhoff 1992; Meador
1997).

' (4M + 3Vd)

T Y (6M + 4Vd) 3

where § = depth below grade to the point of rotation; V =
shear at grade; and M = bending moment at grade.

It is at this stage that the overlooked fourth assumption is
made: that shear and moment at grade have the same algebraic
sign (i.e., they act in the same sense). Once this assumption
is made, formulas similar to (1) are derived. However, by ex-
amining (3), one can make the following observations:

V=0 y=2/3d casel

M=0 y=3/4d case2

M<Oand V>0 y>3/4d case3

Perhaps because the early researchers were primarily con-
cerned with determinant structures, they neglected case 3. This
has given rise to the common misconception that ¥ always
varies from 2/3d to 3/4d for a nonconstrained post. However,
y falls in this range only if V.and M have the same sign. It is
certainly possible that they do not.

The key to understanding this is in the deflected shapes of
the posts, shown in Figs. 1 and 2. Fig. 1 shows.the deflected
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FIG. 2. Post Nonconstrained at Grade, Restrained at Eave

shape assumed by (1) (billboard) and Fig. 2 shows the de-
flected shape of the same post restrained at the eave (post-
frame building). Part of the appeal of (1) is that it is deter-
minate. The soil pressure depends only on the embedment and
the applied loads, not the soil properties or the stiffness of the
post. In contrast, a combined LFRS is indeterminant. That is,
the soil pressure and forces at grade vary with the relative
stiffnesses of soil, post, and diaphragms. A weakness in the
traditional methodology is that it provides no guidance for
calculating deflections. In contrast, the methods developed by

Bohnhoff and Meador and presented in this paper allow a de-
signer to estimate deflections. Because of the indeterminant
nature of the embedded post with eave restraint, it is obvious

~that the post could assume the deflected shape shown in Fig.

2, but it is not obvious what shape it will assume.

Empirical Analog.

One straightforward way to determine the deflected shapes
and soil pressure profiles each case generates is to analyze the
two analogs shown in Figs. 3 and 4 using a matrix analysis
computer program such as the Purdue Plane Structures Ana-
lyzer 4 (PPSA4). The soil is modeled as a series of “bars’’ or
“springs.”’ The stiffness of these bars or springs can be in-
creased linearly with depth below grade by increasing their
“area,”’ just as the soil is assumed to by (1). It is necessary
to have a stiffness value of the soil, #,. Both Bohnhoff (1992)
and Meador (1997) developed soil stiffness values based on
the work of earlier researchers. They assigned a range of val-
ues from 1,000 pounds per cubic foot per foot below grade
(pef/ft) for soft clay to 40,000 pef/ft for firm gravel (Table 1).
A modulus of elasticity of the soil analog element can be cal-
culated (using a set of consistent units).
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FIG. 3. Analog1 Post Nonconstrained and Unrestrained
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where E,,; = “equivalent’’ modulus of elasticity; n, = constant
of horizontal soil reaction; y, = depth below grade to center
of first soil analog element; d,,; = arbitrary depth (or height)
of soil analog; and L,,, = arbitrary length df soil analog ‘“‘bar.”’

Limiting Value of Constant of Horizontal Soil
Reaction

The deflected shape of the indeterminant post can also be
determined by recognizing that when moment at grade equals
zero, the shear at both the eave restraint and grade equal half
of the applied uniform load. One can solve for the minimum
soil stiffness required for this condition to develop by applying
the principle of superposition to an unrestrained post, as shown
in Fig. 1. First, the post is analyzed under uniform wind load-
ing. Second, the post is analyzed for a concentrated restraining
force at the eave. Finally, the critical value of soil stiffness is
found by applying the compatibility condition that deflections
at the eave sum to zero. First, consider the deflection at grade

JABLE 1. Presumed Soil Properties for Post Foundation De-
sign (in Absence of Codes or Tests) and Constants of Horizontal
Soil Reaction

Estimated
Constant of
Horizontal Soil
Reaction
Class Description of Materials Density |(kPa/m*)| (Ibf/ft*)
(1) (2) 3 (4) (5)
3 |Sandy gravel or gravel Firm 6,285 | 40,000
3 |Sandy gravel or gravel Loose 1,570 10,000
4 1Sand, silty sand, clayey sand, silty gravel,| Firm 1,570 10,000

and clayey gravel
4 |{Sand, silty sand, clayey sand, silty gravel,] Loose 1,180 7,500
and clayey gravel
5 |Clay, sandy clay, silty clay and clayey siltf Medium 785 5,000
5 |Clay, sandy clay, silty clay and clayey silt| Soft 160 1,000

Note: Values from Meador (1997, Table 2).

of the unrestrained post using another relationship developed
by Meador (1997, Eq. 64):

_ 6(4M + 3Vd)

e

%)
where A = lateral deflection at grade of post without eave
restraint (Fig. 1). '

For a post with uniform wind pressure,

wh
M, = > 6)
V., =wh ' %))

where w = uniform wind load (pounds per inch) against post.
Substituting (6) and (7) into (3) yields

) 2k + 3d
yw_d<3h+4d> A ®

. Determine deflection at grade using (5).

6wh
= — (2h +
A, bd’ (2h + 34d) ()

The defiection at the eave, due to rotation below grade, is then

)

Ae; = A (10)

There is also an elastic component to the deflection at the
eave (Fig. 1). In any standard engineering text the formula for
this deflection (neglecting shear) is

Aey = — an

where E = modulus of elasticity of post; and I = moment of
inertia of post.

Second, the deflections, 8¢, due to the restraining force, Re,
applied to the eave of the post shown in Fig. 1 can be derived
similarly, where

h
Vi=Re =2 (12)
2
wh?
Mgz = Reh = —5— (13)

Note that y; and Az must be calculated on the basis of M; and
Vr. The elastic deflection is

Rek®  wh'

L 14
2= 3E1 T 6EI 14
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where B¢, = elastic deflection due to restraining force at the
eave. With a rigid restraint at the eave, the summation of de-
flections must equal zero.

Ae; + Ae; — Be; — 8e, =0 (15)

The following equation can be derived by substituting terms
and algebraic manipulation:

72ET
= - +
Nyo bR (3d + 4h) (16)

where n,, = minimum soil stiffness for moment at grade M to
equal zero.

For values of n, < n,, the bending moment at grade is less
than zero (M < 0) and the deflected shape of the post is as
shown in Fig. 2. A word of caution is necessary. As the re-
quired soil stiffness becomes higher, the moment at grade be-
comes more sensitive to the original assumption that the post
is rigid below grade. This assumption is not made when a
matrix analysis program is used to analyze analog 2 (Fig. 4).
Such analysis gives a greater required soil stiffness than when
deflections below grade are neglected.

For n, > n,, the bending moment is greater than zero (M >
0). In this circumstance, a point of inflection will be present
in the post; and the deflected shape below the point of inflec-
tion will be similar to Fig. 1. In this author’s opinion, this will
be very rare in practice. Although the IBC nonconstrained for-
mula could apply to this case, the method that will be pre-
sented later is general enough to apply to this case as well.

Calculating Horizontal Soil Pressure

At this point there is a way for the designer to determine -

the deflected shape of the post. The preceding equations have
shown the necessity of an alternate method to check embed-
ment when the shape is as shown in Fig. 2. The equation for
soil pressure was developed by Meador (1977): In brief, for a
rigid post the deflection below grade, x, is along the straight
line defined by

x=A—$y=A<1—Z_) an
y y

where y = distance below grade.

As already noted, the soil stiffness measured by n, is com-
monly taken to increase linearly with depth—that is, n,y. The
soil pressure, g, is then the soil stiffness times the distance
below grade times the deflection.

q = my(x) (18)
Substituting for x yields

y2
=mAly — = 19
q=n, (y y_) (19

By setting the summation of forces at grade equal to zero

3 d
V=bfq=n,.Ab (X;-—gy;)] (20)

Since ¢ = 0 at y = 0, the constant of integration equals zero.
By evaluating the integral and algebraic manipulation, the fol-
lowing equation for A can be derived:

A=~—V—-— 21)

da &
(5-5)m

Once A is determined using (21) or (5), it can be substituted
into (19) and the soil pressure at any point below grade can
be determined.

Calculating Required Soil Strength

As shown in the examples, there are now two curves under
consideration (Figs. 5 and 6). Eq. (19) plots the pressure im-
posed on the soil by the post, g. The second curve is the
straight line S,y, where S, = required soil strength. Meador
quotes Terzaghi, who stated that the required soil strength can
be determined when the slope of the soil pressure curve equals
the slope of the required strength curve at y = O (grade). This
statement can be more easily understood through an exami-
nation of Figs. 5 and 6 that accompany the example. The re-
quired soil strength is not the maximum pressure divided by
the depth to that pressure. Instead, the required soil strength
increases as depth decreases. As Terzaghi noted, the pressure
curve for this case is steepest at grade. Meador notes that by
setting the two slopes equal at grade

S, =mA 22)

Meador also points out that (for the determinant case) it has
been traditional to use an average resisting pressure by defin-
ing S, at some distance below grade (such as S, in the IBC
draft). This results in calculated pressures, g, that exceed S,y
for some regions of the post below grade. A discussion of this
subject is beyond the scope of this paper. Therefore, the values
of S, presented in the examples are those where ¢ will not
exceed S,y.

At this stage, the paper has presented all the tools necessary
to check the embedment of a nonconstrained post in a com-
bined LFRS. Remember that since this is an indeterminant
system, the shear and moment at grade must be determined
based on the relative stiffnesses of the diaphragms, posts, and
soil. If the stiffness of the soil and the depth of embedment
are considered during the lateral wind load analysis of the
post-frame building, then the values of M, V, and 7 will vary
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with n,. Therefore this author considers it most appropriate to
select a trial embedment depth, determine M and V, and check
S,. One excellent method to determine shear and moment at
grade was presented by Bohnhoff (1992). In the two examples
that follow, it is assumed that lateral deflection at the top of
the post is negligible. This situation could arise where posts
are located close to a shear wall (Gebremedhin 1992).

EXAMPLES

A nonconstrained building post measures 120 in. (k) from
grade to eave. The post embedment, d, is 48 in. The post is
subjected to a uniform wind load of 10 lbs. per linear inch of
height. The top of the post is completely laterally restrained
at the eave by a stiff roof diaphragm. The post has an effective
width, b, of 7.78 in. and an EI of 89,520,000 1bf(in.)(in.). First
estimate n,,, using (16).

(72)(89,520,000)

nyo = 56,094 (pcf/ft)

A trial-and-error analysis using analog 2 (Fig. 4) and PPSA4,
which includes post deflections below grade, gives an estimate
of the critical soil stiffness of 73,100 pcf/ft. Both of these
values are well beyond the upper range of soil stiffnesses pre-
sented in Table 1. So the post will assume the shape shown
in Fig. 2.

Soft Clay Soil

Soil 1 is a very soft clay with a constant of horizontal soil
reaction, n,, of 1,000 lbs per cubic foot per foot (0.048 lbs per
cubic in. per in.). By engineering analysis it has been deter-
mined that shear at grade, V, is 475.3 lbs and the bending
moment at grade, M, is —14966.1 in.-1bs.

The depth to point of rotation can be determined using (3).

4(—14966.1) + 3(475.1)(48)

6(—14966.1) + 4(475.1yag) - 22848 in.

y=(48)

The deflection at grade can be determined using (21).

475.1
A= = 1.24 in.

2 3
(48 48 ) (0.048)(7.78)

2 3(288.48)
The required soil strength can be determined using (22).
S, = (0.048)(1.24)(12%) = 102.9 psf/ft

The calculated lateral deflection at grade using PPSA4 and
analog 2 was 1.28 in. The soil pressures at various depths can
be calculated using (19). The calculated pressures also agreed
well with the reactions in the “springs’’ of analog 2. The pres-
sure profile and S,y is presented in Fig. 5.

Medium Ciay Soil

Soil 2 is medium clay with a constant of horizontal soil
reaction, n,, of 5,000 Ibs per cubic foot per foot (0.241 Ibs per
cubic in. per in.). By engineering analysis it has been deter-
mined that shear at grade, V, is 490.9 Ibs and the bending
moment at grade, M, is —13089.8 in.-Ibs.

Using (3) yields
y = 56 in.
Using (21) yields

A =0.53 in.
Using (22) yields
S, = (0.241)(0.530)(12%) = 220.7 psf/ft

The PPSA4 analysis gave the calculated deflection at grade as
0.55 in. Calculated pressures agreed well and are plotted in
Fig. 6.

CONCLUSIONS

When a nonconstrained post is supported above grade by a
diaphragm, the structure becomes indeterminant. Often the
shear and moment at grade will not act as assumed in the
traditional nonconstrained embedment formula. In those cases
it is necessary to check lateral embedment by calculating the
pressure imposed by the post on the soil. A designer must
resist the temptation to consider the traditional formula con-
servative. Remember that load goes to the stiffer structural
element, not to the stronger. It is dangerous to simplify design
by assuming a determinant structure rather than performing an
indeterminant analysis. No amount of embedment depth can
compensate for an improperly designed diaphragm.
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APPENDIX . NOTATION

The following symbols are used in this paper:

b = diameter of round post or footing or diagonal dimension
of square post; ,
d = depth of embedment in earth in feet (m);
d,., = arbitrary depth (or height) of soil analog;
E = modulus of elasticity of post;
E.g = “equivalent’’ modulus of elasticity of soil analog ele-
ment;
h = distance in feet (m) from ground surface to point of ap-
plication of P;
I = moment of inertia of post;
L., = arbitrary length of soil analog element;
M = bending moment at grade;
n, = constant of horizontal soil reaction;
ny = minimum soil stiffness for moment at grade, M, to equal
Zero;
P = applied lateral force in pounds (kilonewtons);
q = soil pressure (psf);
Re = restraining force applied to post at eave;
S, = the required soil strength;
S, = allowable lateral soil-bearing pressure (pounds per square

foot per foot of depth) based on depth of one-third depth
of embedment (kilopascals);
V = shear at grade;
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w = the uniform wind load (lbs/in.) against the post; Subscripts
x = lateral post deflection below grade; . .
y = distance below grade; R = pr_pduced by concenu"ated restraining force applied to post
5 = depth below grade to point of rotation; without lateral restraint at eave;
y: = depth below grade to center of first soil analog element; w = produced by uniform lateral wind load along length
A = lateral deflection at grade of post without eave restraint; (above grade) of post without lateral restraint at eave;
Ae = deflection at eave of post without lateral restraint at eave 1 = deflection of post without lateral restraint at eave caused
due to uniform wind load; and by post rotation below grade; and
de = deflection at eave of post without lateral restraint at eave 2 = deflection of post without lateral restraint at eave caused
due to restraining force applied at eave. by elastic deformation in post above grade:
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